SCHEME OF EVALUATION

II Sem	ment of Physics,MITManipal University, Manipalnester B.Tech Test 1Engineering Physics [PHY102]Date 22-02-20148.00-9.00 amMax Marks: 20
Note:	Answer all the questions.
1. Choose the most appropriate answer for the following out of the options given: [1x5]	
(i) HRK MCQ 41-3	In a double slit interference experiment the slit separation is d and the slit- screen distance is D. Green light is used to form the interference pattern. The green light is then replaced by red light. Which of the following changes will allow the spacing of the bright bands on the screen to remain unaffected by the change of light colour?
	 (A) Increase D (B) Decrease d (C) Increase d and / or decrease D (D) Increase the brightness of the light source
	Ans: C 1 mark
(ii)	Which of the statements is most correct?
HRK MCQ 42-1	 (A) Diffraction occurs only for transverse waves (B) Red sunsets are a diffraction phenomena (C) Diffraction explains rainbows (D) Diffraction is proof that light can behave like a wave
	Ans: D 1 mark
(iii)	The intensity of the first secondary maximum in single-slit diffraction is approximately what percentage of the intensity of the central maximum?
MCQ 42-7	 (A) 50% (B) 25% (C) 5% (D) It depends on the width of the slit
	Ans: C 1 mark
(iv)	A vertically oriented, ideal polarizing sheet transmits 50% of the incident unpolarized light. The polarizing sheet is now rotated through 45°. What fraction of the incident intensity now passes?
	(A) 0% (B) 50% (C) 100% (D) Either 0% or 100%
	Ans: B 1 mark
(v) HRK MCQ 44-7a	Light reflected from the surface of a road is $\frac{1}{3}$ vertically polarized and $\frac{2}{3}$ horizontally polarized. At what angle should the polarization direction of polarizing sheet be oriented to provide the maximum reduction in light intensity?
	 (A) vertically (B) 30° from the vertical (C) 30° from the horizontal (D) horizontally Ans: A

2. Explain the term coherence of light waves.

 $\frac{1}{2}$ mark for each main point. Max 2 marks

Common sources of visible light emit light wave trains of finite length rather than an infinite wave. $\frac{1}{2}$ mark

The degree of coherence decreases as the length of wave train decreases.

Two waves are said to be coherent when they are of :

- mutually comparable amplitude
- same frequency
- same phase or are of a constant phase difference

A SECTION OF INFINITE WAVE 1 mark A WAVE TRAIN OF FINITE LENGTH L

1/2 mark

Laser light is highly coherent whereas a laboratory monochromatic light source (sodium vapor lamp) may be partially coherent.

 Obtain an expression for the width of the central maximum in diffraction pattern due to multiple slits. [3]

The pattern contains central maximum with minima on either side.

 λ = wavelength of light.

N = total number of slits.

 $\delta \theta_o$ = width of the central maximum.

- ΔL = path difference between the light waves from the two adjacent slits separated by d at the position $\delta \theta_o$.
- $\Delta \phi = \text{phase difference between the light waves from the two adjacent slits separated by d at the position <math>\delta \theta_o$.

 $\Delta \mathsf{L} = \left(\frac{\lambda}{2\pi}\right) \Delta \phi = \frac{\lambda}{\mathsf{N}}$ $\Delta L = dsin\delta\theta_0$ mth principal 80 maximum $\frac{\lambda}{N} = d\sin \delta \theta_0$ θ Central $\sin\delta\theta_0 = \frac{\lambda}{Nd}$ principal maximum **♦** δθ₀ DD 1/2 mark $\delta \theta_0 \cong \frac{\lambda}{Nd}$ 1¹/₂ mark

At minima, the phase difference, $\Delta \phi = 2\pi / N$

[2]

4. Sketch the schematic graph of a travelling electromagnetic wave showing the electric and magnetic vectors. [1]

White light reflected at perpendicular incidence from a soap film (refractive index = 1.33) in air has, in the visible spectrum, an interference maximum at 600 nm and a minimum at 450 nm with no minimum in between. What is the film thickness, assumed to be uniform? [3]

5. HRK E 41-28 **6.** HRK E 42-9 A slit 1.16 mm wide is illuminated by light of wavelength 589 nm. The diffraction pattern is seen on a screen 2.94 m away. Find the distance between the first two diffraction minima on the same side of the central maxima.

[3]

a = 1.16 mm, D = 2.94 m, λ = 589 nm a sin θ = m λ FOR mTH MINIMUM tan $\theta \cong \sin \theta = m\lambda / a$ FOR SMALL θ 1 mark tan $\theta_1 = y_1 / D = \lambda / a$, tan $\theta_2 = y_2 / D = 2 \lambda / a$ 1 mark Subtract and simplify: $y_2 - y_1 = \lambda D / a$ Substitute: $y_2 - y_1 = 1.49$ mm 1 mark

7. HRK SP 43-3a A grating has 9600 lines uniformly spaced over a width 3 cm and is illuminated by mercury light. What is the expected dispersion in the first order, in the vicinity of intense green line (wavelength = 546nm)? [3]

$$w = 3 \text{ cm}, \qquad N = 9600, \qquad \lambda = 546 \text{ nm}, \qquad m = 1$$

$$d = w / N = 3125 \text{ nm} \qquad \frac{1}{2} \text{ mark}$$

$$d \sin \theta = m \lambda, \qquad \theta = \sin^{-1} (\lambda / d) = 10.06^{\circ} \qquad 1 \text{ mark}$$

$$D = m / (d \cos \theta) = 3.25 \times 10^{-4} \text{ RAD/nm} \qquad \frac{1}{2} \text{ mark}$$

$$= 0.0186^{\circ}/\text{nm}$$